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TWO-DIMENSIONAL TRANSIENT HYGROTHERMAL STRESSES
IN BODIES WITH CIRCULAR CAVITIES: MOISTURE AND TEMPERATURE COUPLING EFFECTS

by

G. C. Sih
Institute of Fracture and Solid Mechanics
Lehigh University ;
Bethlehem, Pennsylvania 18015 USA

and

*
Akinori Ogawa

National Aerospace Laboratory
Tokyo, Japan

ABSTRACT

When moisture and/or temperature are suddenly changed on the boundary of a
solid, stresses and strains are introduced and they can be further agaravated by
the presence of stress raisers such as voids or cavities. A time dependent fi-
nite element procedure is developed for solving the hygrothermal stresses around
a circular cavity in a finite plate. Numerical results are displayed graphically
for the T300/5208 graphite fiber-reinforced epoxy resin material. The size of
the hole relative to the plate is varied for three different cases such that the
interaction of moisture and temperature is investigated in conjunction with changes

in the solid geometry.

Possible failure sites are also examined by application of the strain energy
density criterion. These locations are determined from the stationary values of
the strain energy factor. The hygrothermal influence tends to move the failure
site away from the cavity while the mechanical load gives the opposite effect.
The proportion of the energy stored by hygrothermal and mechanical disturbances

is investigated. h

*Akinori Ogawa held the position of Visiting Scientist at the Institute of Frac-

ture and Solid Mechanics, Lehigh University, for the academic years 1978 to 1980 7

during which time this work was completed. I
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INTRODUCTION

The general influence of moisture and/or temperature on the stresses and
displacements in laminated composite materials [1,2] has received increased at-
tention in recent times. It is known that when a laminate absorbs moisture,
its mechanical stiffness and strength are degraded and recovery is incomplete
after desorption. Heat can also degrade a material. These environmental influ-
ences can interact so that the stress state of the material is dependent on both
temperature and moisture in its surroundings. A theory of diffusion which in-
corporates the interaction between temperature and moisture can be found in [3].
Phenomenological arguments leading to coupled equations governing the simulta-
neous diffusion of moisture and heat were further elaborated in [4]. A1l the
physical models led to the same system of differential equations although the
coefficients related to the basic thermodynamic properties of the solid differed.

Discussed were the reciprocal effects of heat and moisture.

The stresses produced in a plate by the hygrothermal strains associated with
the diffusion processes described earlier have been calculated [5]. Both the
conditions of suddeniy applied temperature and/or moisture on the plate surface
were considered. Since the temperature and moisture concentration in the plate
vary with time, the stresses also fluctuate and tend to zero when the temperature
and moisture concentration become uniform. The situation when the moisture dif-
fusion coefficient is temperature dependent was treated in [6] for the symmetric
boundary conditions which produce no bending. Coupling of moisture and heat was
found to be inherent in the case of transient temperature boundary condition for
a given moisture content. Depending on the magnitude of the surface temperature

change, the stresses predicted from the coupled and uncoupled theory can differ
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anywhere from 20 to 80%. Bending is produced when the boundary condition is

skew-symmetric [7].

The present investigation is concerned with the moisture, temperature, and
stress fields for the problem of a plane body containing a circular hole. The
coupled diffusion equations with polar symmetry are first solved by a time de-
pendent finite element procedure. Since the elastic deformation is assumed not
to be coupled with moisture and temperature, the stresses can be solved indepen-
dently once the diffusion field is determined. Two types of transient boundary
conditions are considered. They are the sudden change of temperature and mois-
ture on the circular hole. Numerical results are displayed graphically and dis-
cussed in connection with the minimum strain energy density criterion for loca-
ting possible failure sites. The accuracy of the time dependent finite element
procedure developed in this work is tested by solving the one-dimensional diffu-
sion problem of a plate whose solution is known in closed form [5]. The results

agree very well and are given in the Appendix.
FINITE ELEMENT FORMULATION
A time dependent two-dimensional finite element method will be developed to

solve the coupled diffusion equations of heat and moisture:

Dv2C - (C-aT)

"
o

3_
it

Dv2T - (T-vC)

L]
o

a_
at

in which v2 = 32/3x2 + 32/3y2 stands for the Laplacian operator in two dimensions

and t is the time. In equation (1), T is temperature and C is the mass of mois-
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ture per unit volume of void space in the solid. The diffusion coefficients D

o T T :

and D have units of area per unit time, and the coupling coefficients A and v
have units of mass per unit volume per unit temperature and the reciprocal, re- 'f
spectively. These equations are relatively easy to solve in the one-dimensional
case and when the coefficients are constant and boundary values of temperature
and moisture content are held constant between occasional moments of sudden

changes [5].

Referring to Figure 1, the boundary value problem to be considered here is
inherently two-dimensional and multiply-connected with an inner boundary m and ﬁf
outer boundary Ty. The enclosed region is denoted by R. For t<0, the tempera- }:

ture and moisture fields are such that

Ly

T(x,¥,t) = To(x,y)

C(X,y3t) CO(XJ)

while for t>0 they change to ;f
T(x,y,t) = To(x,y) + aT(x,y,t)
C(x,y,t) = Co(x,y) + aC(x,y,t)

Since equations (1) cannot be solved generally by analytical means, a finite

element procedure will be developed.

Basic gonmulation. In order to apply a scheme used in variational calculus, the i3
following scalar functions 91 and ¢, are introduced:

-4-
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_ D r,3C,2 3C, 2 3
T fRf =55 + (3;? ] + € =5 (C-AT)}dxdy
(4)
- D ~3T\2 . ,37,% 3
by = IRI G UG + (5 T+ T 5% (T-v0) ddxdy
The desired solution to equations (1) can be obtained by requiring

Let the body in Figure 1 be divided into m triangular elements with n nodes. The
moisture C and temperature T at the nodes will be denoted with the subscripts
i,j and k while C and T will refer to the values in the element A. For a linear

relation, C and T can be written as

(]
]

—
1]

C—l—'—‘ '
. .

NiTi + NjTj + Nka = {Ni’Nj’Nk]

in which Ni’ Nj and Nk stand for

N = 25 Loy = Xg) + 5% + Dgeg)y] 7

J
with A being the area of a typical element shown in Figure 1. Note that the ex-
pressions for Nj and Nk may be obtained by the cyclic permutation of subscripts.
A system of linear eguations can thus be obtained with the help of equations (5)

and (6):

I E—— T —




E—i—= 0’ 1= ]92,"" n

(8)
302 .
TS 0, i =1,2,-=~, n

Let the vector C and T be defined as

1
C, T2

c=1.].1=1. (9)
K n

Applying the conditions in equations (8) to (4) yields the expressions

1]
o

HC + DKG - AT
HT + OKT - WHC = 0

where dot represents differentiation with respect to time. The elements of the

*
matrices H and K for the finite element A are given by

*
If the origin of the coordinate system {x,y) in Figure 1 is placed at the cen-

troid of the element A, then Hgg) becomes

(A) _1 ] peozeu2y 4 ]
Hij ol vy [aiaj + T?'bibj(x1+xj+xk) * 17 (bidj + bjdi)(xiyi * gyt xkyk)

1 2 4y24u2
+ T? d'idj(y'i+‘yj+yk)]




(R) 1
Hij TN jAf (ai *b.x + diy)(aj + bjx + djy)dxdy

(1)
(A) _ 1
in which
a5 = XY = XYy b, = Y=Yy d; = xy - X; (12)

and the remaining quantities in equations (11) can obviously be obtained by the

cyclic permutation of the subscripts. The quantities Hi and Kij can be obtained

J
- (A) . (B) (A) . (8B)
by summing up Hij s Hij »e .5 and Kij s Kij »...s for all elements A, B, etc.,
i.e.,
\ (A) , 4(B)
b = Hy.” + Hyo' + ...
ij H‘J H1J
(13)
= ¢(A) (B)
K_ij _Kij +K'ij +..-

Decomposing matriices and vectorns. In order to solve equations (10) numerically,

it is convenient to rearrange it to the forms

——
l._c
]
<
e
[ = of
O
+
>0
P
(o]
+
2
—
1
o

1 .
(; - )\)ﬂI +

L)

KL + DKC

[}
o

The time portion of the probiem will be solved analytically so as to give an ade-

quate treatment of the transient nature of the boundary conditions.
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Equations (14) will be re-structured by decomposing the matrices and vectors
into parts referring to the inner region with subscript I and to the boundary
nodal points with subscript B. This leads to

)
Ki€r *+ PKiIp = - (5 - vIHCe - 5 Kisls - PKiplg

o

>|o

: :
(x - VMg
(15)

Lo

(L - 8T+

< |

1
- (; = X)H - - K T - DL('IB‘(\:'B

Kilp * DK Higls - 5 Kils

thI

As t becomes infinitely large, the steady state condition is recovered and equa-

tion (15) reduces to

|
o

Ki&r * K1l -
(16)
Kilr * Kiglg = O
In what follows, the transient boundary conditions of sudden moisture and/or tem-

perature change will be considered.
BOUNDARY CONDITIONS

Let So and Io be the initial values of the moisture and temperature vectors
while Qf and If are those corresponding to the final values. The quantities A§B
and AIB represent the increment change of these vectors on the surfaces I and

1 as shown in Figure 1, i.e.,

(7)




Sudden Molsture Change. The first type of transient boundary conditions in-
volves a sudden change of the moisture condition on FI while the temperature re-

mains constant. No changes occur on P11 This can be expressed as

ACB, on FI
AC =
0,onrT

11
(18)
AT = 0, on It and T11
Under these considerations, equation (15) becomes
D L
(- Gy + TGy * KLy = - F Kigle - Pielo - (7 - vMetGed(t)
(19)
. 0 i »
(%" MHL + 5 KLy + OKGp = - DKygle - 5 X1glo
Taking the Laplace transform of equations (19) such that
II = g II(t) exp(-st)dt
(20)

it can be shown that by eliminating §I’ the following expression is obtained:

. -1
(s + sh+ ANTT) = - (- V(K + HigeCe) (21)

in which g, ﬁ and 5 are given by

eaedl i, L

-

e
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A= D(XC - 1)ﬁ1
=1 . -1

M=g - VG- VK (22)
JD0 1

E-- D (Av ])ﬁl

e f.(t) (23) ¥
where n is the number of nodes. The eigenvectors e; obey the relation °
(A - w2M)e. =0, 1=1,2,..., n (24)

For a nontrivial solution, the determinant [A-wM[ must vanish which may be evalu-

ated to yield ws - The scalar function fi(t) is

£.(t) tjexplvieit) inh(ws t5ZT), lye] > 1 (25)
. = sin . yé- N Ys >
i oy FTT Wity i

In equation (25), a; and Y; stand for 5

ag == (F - Vel (MK K1goCy + HigoCs)

1 .7

Yi T 7 il

Similarly, the same procedure can be repeated to eliminate II in the expres-

sions for the Laplace transforms of equations (19). This leads to

-10-
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n
S1- %= L &9l (27)
and the scalar function gi(t) takes the form
By
gi(t) = — - exp(-yiuit)cosh(mitfyg-l5|
i
exp(-vyu;t) B3Y;
+ e (k; - =) sinh(u,tATT) for |y, > ) (28)
N_iVY,i‘] 1.
where
- 1 T, -1
< = (1= 53 eifliky XretGa (29)
The condition [yil > 1 is always satisfied since it can be shown that
Y; =00 (30)
2vDD(1-Av

Sudden Temperatutre Change. If the moisture on "1 and I is held constant while

the temperature on T is changed from To to Tf, then the following conditions

prevail:

AC = 0, on FI and FII

ATB, on FI
AT =

0, on FII

In this case, equation (15) becomes

o

Ki&r * OK1lp = - ¥ Kiglo - DXiple

214

>l

] .
(5 = v+
(32)
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]
K18l¢ - DKpplo - (5 - M)Hypalgs(t)

Following the procedure discussed earlier where use was made of Laplace trans-

form, it is found that

The function hi(t) is found to be

*

1

w; v’y,‘?-'l
*

*  Bivio .
x (k= —) sinh(w,t/Y2-1) for |vy.| > 1 (34)
w.i A 1 h]

J *
in which B4 and «; are given by

w
[}

- 1, T
o1 - Av) Ei'SIB

(35)

* 1y Ty -1
<5 =p (1 - 55) &K Kipalp

Returning to equations (32), Cr - go can also be evaluated and it takes the form

¢r - =

o e;k;(t) (36)

nr-13

i=]

with ki(t) being given as

cwit)

*
aexp(-v,u;

ki(t) = sinh(m1t/y$-1) for !Yi! > (37)

Q),i Yi-]
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such that

ar = - 2o neln Tk, aT (38)
i * -5 (G- MKy Kgals

This completes the formation of the time-dependent portion of the problem.
The geometric portion will be solved numerically by the method of finite element

in the numerical examples to be followed.
NUMERICAL EXAMPLES: DIFFUSION PROCESS

The geometry to be treated is that of a square plate LxL containing a circu-
lar hole of radius a. Referring to Figure 2, if the boundary conditions on the
hole or T is independent of 6, then the problem possesses 1/8 - symmetry. Only
the shaded area needs to be analyzed. Considered are three different L/a ratios
with L being equal to 8, 16 and 1,352*. This corresponds to progressively weaker
interaction of the hole with the plate boundary as the hole radius a is always
kept at unity. The distance b = % - a is kept constant so that the numerical re-
sults for all three cases can be compared on the same graph. The finite element

grid patterns are shown in Figures 3 to 5 and they are self-explanatory.

The plate material is made of an epoxy resin used for the T300/5208 graphite
fiber-reinforced composite. The coupling constants were determined in [6] and
they are D/D = 0.1, » = 0.5 and v = 0.5. Numerical results for the moisture and
temperature distribution around the circular cavity are obtained for the condi-

tions specified by equations (18) and (31) which will be discussed separately.

Moisture Change. For Case I with L=8, a plot of the normalized moisture change

(C-Co)/(Cf-Co) versus (r-a)/b is given in Figure 6 for different values of the

*
In this case, L represents the diameter of a circular plate.
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time parameter Dt/b2. For small time t, the moisture concentration drops rapidly
as a function of the distance (r-a)/b and only the material near the circular hole
boundary is affected. As time increases, the material away from the hole is also
influenced by moisture change and the decrease in (c-co)/(cf-co) becomes more
gradual. The variations of temperature with distance measured from the hole are
exhibited in Figure 7. The temperature peaks near the hole for small time and
their values tend to decrease and move away from the hole as t is increased. The
results for Case I with L=16 are not appreciably different from those shown in
Figures 6 and 7 and hence will not be displayed. When L=1,352 such that the hole
diameter is decreased considerably in size as compared with that of the plate, a
significant change of results are observed. They are referred to as Case III
illustrated in Figures 8 and 9. The moisture changes in Figure 8 for different
times are seen to take place only in the material close to the hole boundary.

The temperatures in Figure 9 do not peak as significantly as those in Figure 7
when the hole is closer to the plate edge. A comparison of results for all the
three cases is made in Figures 10 and 11 in terms of the average moisture and

temperature defined as

=] 1
Cave = 7 J €OV, To =y J TV (39)

Displayed in Figure 10 is (C -Co)/(Cf-Co) versus vDt/b. As it is to be ex-

ave
pected, a significant uptake in moisture as a function of time is observed for
Case I where the circular hole occupies a greater portion of the plate. The
presence of the hole becomes less and less significant as its size is reduced
going from Case I to Case III. Similarly, the average temperature peaks at
/Dt/b = 0.55 for all cases with the largest peak corresponding to Case I when

the hole and plate edge interaction is the strongest. This is shown in Fiqure

1]0 -]4_




Temperature Change. If the temperature on the hole boundary T is suddenly
changed from Ti to Tf while the surface moisture is kept constant, Figure 12 dis-
plays the drop in temperature as a function of (r-a)/b for Dt/b2 = 0.011, 0.044
and 11.111. The material near the hole experiences more severe temperature drop
for small time t. As more of the material is subjected to temperature changes,
this influence becomes more gradual. The corresponding changes in moisture C-Ci
are similar to those shown for T-Ti in Figure 7 when moisture boundary condition
is specified. In fact, the results for C-Ci can be obtained from those in Figure
7 for T-Ti by the multiplication factor D/D since A = v = 0.5 for this particular
example. Therefore, C-Ci will peak near the hole and then decrease. Figure 13
gives the decrease in temperature versus distance for Case III. The trend is

the same as that in Figure 12 except that the influence is confined closer to

the hole boundary. The values of C-Ci for Case III again differ from those in

Figure 9 for T-T, by the factor D/D and hence will not be repeated.
i

TRANSIENT HYGROTHERMAL STRESSES

Once the moisture and temperature distribution in R are known, the stresses

can be obtained in a straightforward manner as follows:

) (40)

in which the stress tensor g has the components ¢., o_. and oy and the strain ten-

8 6
referred to the polar coordinates r, ¢ and

r’

sor has the components Eps € and €

8 9
z in Figure 2. For plane strain, the matrix E for an isotropic and homogeneous

material is given by

-15-




1, vp/(l-vp), 0 )
E(1-v.) ( )
E - = v./{(1=-v.), 1, 0 (41) 1
+vp Vp p p {
o 0, (1=2y)72(1-w), §
where E is the Young's modulus and Vp the Poisson's ratio. Assuming that €, = g, s?
the transverse normal stress component o, can be found as 'j
1
o, = vplog*ag) - ELa(T-T;) + 8(C-C))] (42)

The coefficient of thermal expansion is a and of moisture expansion is g. The

hygrothermal thermal strain e, in equation (40) takes the form

in which eo is defined by

8, = a(T-T ) + 8(C-C,) (a8)

There remains the determination of 3 owing to the nonuniform distribution of C
and T throughout the elastic plate containing a circular cavity. This will be

accomplished by application of the finite element procedure.

Let q be the equivalent nodal force which is statically equivalent to the

tractions applied on the element. It can be expressed as

{ q=0a-p (45)
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k-

such that

Q= /g'Edv, p=[g

Ee dV (46)
~ v v ~ Q)

and a is the equivalent nodal displacement corresponding to q:

[2; 9
% B
273 97 (47)
- ] -
The matrix B 1s given by
B = [B;. By, Byl (48)
in which
.Y-i'yma 0
=1 -
Bi=am| O Xpx; (49)
Xm'xj’ Yj‘ym

and §j and §k may be written down by the cyclic permutation of indices. Since
both g and P in equations (46) are known quantities, a may be found from equation

*
(45) and hence the strain € is determined since

*
Note that the displacement y is related to a as

rﬁi]
4= NI, NG NIy
T
with [ being the identity matrix and Ni‘ Nj, etc., are given by equation (7) and
u has the components
u-=s Niui + Njuj + Nkuk
v = N,v, + N.vj + Nkvk

id b -17-




34

~J
a

It is now obvious that equations (43) and (50) may be inserted into equation (40)

o

€= [B., B., Ek] (50)

to yield the hygrothermal stresses.

For the T300/5208 resin material, the following material properties will be

used for the hygrothermal stress calculations:

4.5 x 102 m/m°C

a

2.68 x 1073 m/m/% Hy0
5 . (51)
psi)

8
E

3.45 GN/m? (5 x 10
Vo = 0.34
Again, the discussion on stresses for the cases of moisture change and temperature

change will be presented separately.

Molsture Change. In all of the cases, the stresses will be expressed in MN/m?

and plotted against the dimensionless distance (r-a)/b such that r=a refers to

the points on the hole boundary and r = a+b = L/2 refers to points on the plate
edge. The dimensionless time parameter Dt/b? is varied from 0.011 to 11.111.

Tihe stresses Ips @ and 9, for Case I are given in Figures 14 to 16. The compo-

8
nent oy in Figure 14 is zero at r=a and r = L/2 as required by the free stress
boundary conditions. It is compressive in the interior of the plate and varies
with time. The peak of the compressive stresses tend to move away from the hole
as time is increased. The circumferential stress component 4 plotted in Figure
15 is compressive near the hole and becomes tensile at a finite distance r which

increases with Lime. A similar trend is observed in Figure 16 for the transverse

-18-




normal stress except that the effect is not as pronounced. When the hole di-
ameter is small in comparison with the plate width L, it is interesting to note
from Figures 17 to 19 referred to as Case III that the stress variations tend
to be confined closer to the hole boundary. The compressive portion of Op and

g, are greater in magnitude than those for Case 1. However, the tensile portion

)
of g and a, greatly reduced. Refer to Figures 18 and 19 for Case III and the
results in Figures 15 and 16 for Case [. Since stresses for Case II do not dif-

fer significantly from those for Case I, they are not presented.

Temperature Change. If the hole is subjected to a sudden change in the surface

temperature as specified in equation (31), the stresses acquire an oscillatory fs
character changing from tension to compression. The variation depends on the

elapsed time. Fiqure 20 shows that 9 is tensile for small time near the hole '
and becomes compressive as r increases. The maximum value of I in tension oc-

curs at intermediate time as it becomes entirely compressive for large time.

The variations of g and 9, in the material ahead of the hole at different times

are illustrated in Figures 21 and 22. A plot of g, versus time for r=a is dis-

played in Figure 23. It clearly shows that g reaches a peak at Dt/b2 = 0.127

and then decreases and becomes compressive. The component a, will have a similar

behavior. Figures 24 to 26 give the stress results for Case III. As the hole

size is reduced, the compressive portion of Op in Figure 24 tends to dominate

while the tensile portion is greatly diminished. The magnitude of both g, and

o, are reduced appreciably in Case II! and the results are given in Figures 25 i

z
and 26. In general, the elevation of the stress state decreases with the ratio

of L/a. Figure 27 gives a summary of the values of Tq for all three Cases I,

I and II1I. The solid curves correspond to Dt/b® = 0.011 and the dotted curves ¥

to Dt/b< = 0.444,
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FAILURE CRITERION: STRAIN ENERGY DENSITY THEORY

Having obtained the hygrothermal stresses Tps Ty and a, around the circular
cavity, it is natural to inquire into possible sites of failure. A criterion
that has been used successfully for predicting failure of solids due to yield-
ing and/or fracture is the strain energy density theory [9,10]. The theory as-
sumes failure to occur when the energy stored within a unit volume of material

reaches a critical value. This energy density can be computed from the stresses

as follows:
1+v v 5
dwW _ 2 2 < 2
EV'TE'B[Or+Ge+°§'W%;(°r+°e+°z) * 20pq] (%2)

The location of failure corresponds to dW/dV being a minimum and the physical
meaning of this condition can be best interpreted by resolving dW/dV into the

sum of two components. The first component (dW/dV)v is associated with volume
change and the second (dW/dV)d with shape change. The locations of dW/dV minimum
corresponds to failure by volume change and are most likely to result in fracture
while dW/dV maximum corresponds to failure by yielding. These are relative mini-
mum and maximum values of dW/dV and occur exclusively within the material, not
including any physical boundary. They are most conveniently obtained by taking
derivatives of dW/dV with respect to the position angle & of the radial vector r
measured from a reference point to a possible failure site. Refer to Figure 2.
Hence, the relation dW/dV = S/r is often used. The quantity S is extracted from
dW/dV as the 1/r coefficient and is known as the strain enerqy density factor.
Numerical results of dW/dV will only be given for Case I where L=8 as indicated

in Figure 3.
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Moisture Chainge. Making use of equation (52), the strain energy density

dW/dV is computed as a function of the radial distance r for different time t.
When the hole boundary is subjected to a sudden change in moisture, the minimum

value of dW/dV or (dW/dV) tends to increase with t reaching a limit as time

min
becomes increasingly larger. This i1s shown in Figure 28. Failure is assumed

to occur when (deV)m.n reaches the critical value of dW/dV or (dW/dV)C for a

given material. The maximum (dW/dV) is approximately 10.5 x 1074 MJ/m3. The

min
trend of the curve in Figure 28 implies that damage due to moisture boundary con-

dition is a long-time effect.

Temperatune Change. The variations of (dW/dV)m.n with time exhibit a different

character when the hole experiences a sudden temperature change. Figure 29 shows

max - 1.7s

that there are two sets of (dW/dV) One has a larger peak (dW/dV)min = 1. &

min'
x 1074 MJ/m3 with Dt/b2 = 0.23 and occurs at a larger distance away from the

hole, r/a = 3.15. The other has a lower peak (dW/dV) = 0.75 x 10'4 MJ/m3 with

min
Dt/b2 = 0.20 and occurs at a smaller distance away from the hole r/a = 1.10. For

the same time t, {dW/dV) is seen to be larger at distances further away from

min
the hole. The strain energy density criterion seems to suggest that failure due
to hygrothermal stresses alone is more likely to occur at approximately one di-

ameter distance away from the hole.

Superposition of Mechanical Stresses. Since in most applications mechanical loads
are also present, it would be natural to inquire into the combined influence of
mechanical and hygrothermal stresses. In the case of a circular hole of radius

a subjected to uniaxial applied stress o., the stress field is given by

o’




o 2 2 4
r 79 (- %7) + (1 - é%— + %%—) cos26]

Q
[[]

o 2 N
oy = 5> [(1+25) - (1 + 2 cosze]

)
(53)
o 2
Opg = - 29-(1 + %%— - %%—) sin2s
g, = Vp(or + 08)

Consider the supposition of an applied tensile mechanical stress of 9y = 0.2
MN/m2, the top curve in Figure 29 can be combined with the (dw/dV)m.n obtained
from equations (53). This leads to the results given in Figure 30 for & = 0°
and 90° which correspond to planes parallel and normal to the direction of ap-
plied stress. The value of (dW/dV)m?z is seen to occur on a plane normal to the
applied tension at a distance approximately r = 3a. The situation is reversed
when the applied stress % is compressive. Figure 31 shows that the most likely
failure site is now in a plane parallel to the applied load, i.e., 8 = 0° along

which (dW/dV) is larger. In general, the failure is assumed to occur when

min

the first (dW/dV) reaches (dw/dV)C.

min

As the magnitude of the applied mechanical stress % is gradually increased
to 1.0 MN/m2, the predicted failure site tends to move in closer to the hole
boundary and the lower curve in Figure 29 becomes more dominant. For 9y = 2.0
MN/m2, it is seen from Figure 32 that the predicted failure site is much closer
to the hole. (dW/dV)m?ﬁ for g positive and %, negative both occur at approxi-
mately r/a equal to 1.1.

CONCLUBING REMARKS

The hygrothermal stresses induced by the sudden change of moisture and/or

temperature at the boundary of a circular cavity are determined. A time dependent
-22-
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finite element procedure is developed in which the time portion of the problem
was solved analytically by means of Laplace transform. A1l calculations are
carried out on the CDC 6400 computer and the numerical results are believed to be
accurate. An estimate of this accuracy can be evidenced by the numerical computa-

tion of
vy = o 20 (1) elue, = 2.0083 (54)

which agrees with the exact value obtained from equation (30). Another check can
be seen from the solutions of the one-dimensional slab problem which has been
solved analytically. This is given in the Appendix. Special care has also been
given to scaling the grid patterns for Cases I, II and III where relative dimen-

sions of the hole and plate are varied.

In addition to determining the coupling effects between moisture and tempera-
ture, the strain energy density criterion was applied to investigate possible
failure sites. Several interesting results were observed. First, the energy
state due to the hygrothermal influence alone tends to dominate in a region ap-
proximately one diameter away from the circular hole while mechanical loading ex-
erts more effects on the stress and energy states close to the hole boundary.
Thus, the precise location of failure will depend on the combined influence of
hygrothermal and mechanical stresses. It should be noted that the present analy-
sis did not consider coupling between diffusion and mechanical deformation. Such

an interaction will be left for future investigation.
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APPENDIX: MOISTURE AND TEMPERATURE DISTRIBUTION

This section considers the special problem of a slab of thickness h which
coincides with the z-direction. The external surfaces of the slab being parallel
to the xy-plane are subjected to sudden change in moisture and/or temperature.
The problem is one-dimensional in space as variations in C and T occurs only as
a function of z. The solutions for the coupled moisture and temperature diffu-
sion problem are given to illustrate that the present time-dependent finite ele-

ment procedure yields the same results as those obtained analytically [5].

The grid pattern is given in Figure 33 and the same constants D/D = 0.1,
= 0.5 and v = 0.5 are used for the numerical computation. Figures 34 and 35 give
plots of (c-co)/(cf-co) and (T-TO)/v(Cf—CO) versus 2z/h for the case when the
moisture on the slab surfaces are suddenly raised from C0 to Cf while the surface
temperatures are held constant. Both the moisture and temperature 1eve1s tend
to increase with the parameter 4Dt/h?. Similar plots are displayed in Figures 36
and 37 for the sudden application of uniform temperature to the slab surfaces.
As mentioned earlier, these results when compared with the closed form solutions

show that the finite element method developed here is indeed reliable.
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Figure 1 - A two-dimensional multiply-connected
domain
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Figure 35 - Variations of temperature with
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Figure 31 - Variations of (dw/dV)min with time for C

AT = constant and applied compressive lo
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